Finite p-groups of class two with a very large multiple holomorph

Cindy Tsang ${ }^{1}$ Joint work with Andrea Caranti ${ }^{2}$

Ochanomizu University (Japan) University of Trento (Italy)

Hopf Algebras \& Galois Module Theory
Online \& University of Nebraska Omaha
June 2, 2022

[^0]
Holomorph

- Let G be a group.
- The (abstract) holomorph of G is defined to be

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G) \quad \text { (outer semidirect product). }
$$

- Let $\operatorname{Perm}(G)$ be the group of all permutations on G.
- One can identify G as a subgroup of $\operatorname{Perm}(G)$ via
(1) the left regular representation: $\lambda(\sigma)=(x \mapsto \sigma x)$ for each $\sigma \in G$
(2) the right regular representation: $\rho(\sigma)=\left(x \mapsto x \sigma^{-1}\right)$ for each $\sigma \in G$
- The (permutational) holomorph of G is defined to be

$$
\begin{array}{ll}
\operatorname{Hol}(G)=\lambda(G) \rtimes \operatorname{Aut}(G) \quad \text { (inner semidirect product) } \\
\operatorname{Hol}(G)=\rho(G) \rtimes \operatorname{Aut}(G) \quad \text { (inner semidirect product) }
\end{array}
$$

regarded as a subgroup of $\operatorname{Perm}(G)$.

- The abstract and permutational holomorphs are isomorphic.

Multiple holomorph

- Let G be a group.
- Consider its permutational holomorph

$$
\operatorname{Hol}(G)=\lambda(G) \rtimes \operatorname{Aut}(G)=\rho(G) \rtimes \operatorname{Aut}(G) .
$$

- It is easy to show that

$$
\operatorname{Hol}(G)=\operatorname{Norm}_{\operatorname{Perm}(G)}(\lambda(G))=\operatorname{Norm}_{\operatorname{Perm}(G)}(\rho(G))
$$

- The multiple holomorph of G is defined to be

$$
\begin{aligned}
\operatorname{NHol}(G) & =\operatorname{Norm}_{\text {Perm(G) }}(\operatorname{Hol}(G)) \\
& =\operatorname{Norm}_{\text {Perm(G) }}\left(\operatorname{Norm}_{\text {Perm(G) }}(\lambda(G))\right) \\
& =\operatorname{Norm}_{\text {Perm(G) }}\left(\operatorname{Norm}_{\text {Perm(}(G)}(\rho(G))\right)
\end{aligned}
$$

- We are interested in the quotient group

$$
T(G)=\operatorname{NHol}(G) / \operatorname{Hol}(G)
$$

of the multiple holomorph by the holomorph.

Connection with regular subgroups

- Isomorphic regular subgroups of $\operatorname{Perm}(G)$ are conjugates of each other.
- The regular subgroups of $\operatorname{Perm}(G)$ which are isomorphic to G are therefore precisely the conjugates of $\rho(G)$. Say $N=\pi^{-1} \rho(G) \pi$, where $\pi \in \operatorname{Perm}(G)$.
- $\pi \in \operatorname{NHol}(G) \Longleftrightarrow \operatorname{Norm}_{\text {Perm(}()}(N)=\operatorname{Hol}(G)$ So restricting to
$\mathrm{NHol}(G)$ means that we only consider the regular subgroups whose normalizer is also equal to $\operatorname{Hol}(G)$.
- $\pi \in \operatorname{Hol}(G) \Longleftrightarrow N=\rho(G)$ So modding out by $\operatorname{Hol}(G)$ means that we get each regular subgroup exactly once.
- Thus, the quotient group $T(G)$ acts regularly via conjugation on ...
- the regular subgroups of $\operatorname{Perm}(G)$ which are isomorphic to G and whose normalizer is also equal to $\operatorname{Hol}(G)$.
- In the case that G is finite, these are just ...
- the normal regular subgroups of $\operatorname{Hol}(G)$ which are isomorphic to G.

Some consequences of $T(G)$ being large

- In the case that G is finite, the quotient group $T(G)$ parametrizes normal regular subgroups N of $\operatorname{Hol}(G)$ which are isomorphic to G.
- Any such regular subgroups N_{1}, N_{2} normalize each other.
- In relation to skew braces ...
- N_{1}, N_{2} yield a bi-skew brace on the set G.
- *Both the additive and multiplicative groups are isomorphic to G.
- The operations on G coming from these N's form a brace block.

Thus, if $T(G)$ is very large, then we get very large brace block.

- In relation to normalizing graphs ...
- N_{1}, N_{2} are connected by an edge in the normalizing graph of G.
- The edges joining these vertices N 's form a complete subgraph.

Thus, if $T(G)$ is very large, then we get a very large clique.

Timeline of the study of $T(G)$

- 1908: G. A. Miller
- 1951: W. H. Mills
- 2015: T. Kohl
- 2018: A. Caranti \& F. Dalla Volta
- 2019: T.
- 2020: T.
- arXiv: T.
finite abelian groups
finitely generated abelian groups
dihedral and dicyclic groups
finite centerless perfect groups
finite almost simple groups
groups of squarefree orders certain centerless groups
- In all of the above cases $T(G)$ turns out to be elementary 2-abelian.
- But there are also many examples where $T(G)$ is not elementary 2-abelian.
- 2018: A. Caranti certain finite p-groups of class 2
- 2022: T. certain finite split metacyclic p-groups
- Under suitable conditions, the order of $T(G)$ is divisible by $p-1$ or p.

Main result

- Consider finite p-groups G with p an odd prime.
- Question. Can the order of $T(G)$ have divisors outside of $p-1$ and p ?
- Answer. Yes. In fact, the order of $T(G)$ can be made very large.

Main Theorem (A. Caranti \& T., arXiv:2205.15205)

For any $n \geq 4$, there is a finite p-group G of class two of order $p^{n+\binom{n}{2}}$ such that
where the second semidirect product is given by $Q^{(A, M)}=M^{-1} Q A$.

- Since every finite group embeds into $\mathrm{GL}_{N}\left(\mathbb{F}_{p}\right)$ for N large enough...

Corollary (A. Caranti \& T., arXiv:2205.15205)

For any finite group H and any sufficiently large $n \geq 4$, there is a finite p-group G of class two of order $p^{n+\binom{n}{2}}$ such that H embeds into $T(G)$.

The idea of the proof

Keep in mind that in the case that G is finite, the quotient group $T(G)$ parametrizes normal regular subgroups of $\operatorname{Hol}(G)$ which are isomorphic to G.

Multiple holomorph and bilinear forms

- Consider finite p-groups G of class two with p an odd prime.

Theorem (A. Caranti, 2018)

There is a bijection between:

- the normal regular subgroups of $\operatorname{Hol}(G)$ whose projection onto $\operatorname{Aut}(G)$ lies in

$$
\underbrace{\operatorname{Aut}_{c}(G) \cap \operatorname{Aut}_{z}(G)}
$$

the subgroup consisting of all $\varphi \in \operatorname{Aut}(G)$ which induces the identity on $G / Z(G)$ and $Z(G)$
(1) the bilinear forms $\Delta: G / Z(G) \times G / G^{\prime} \longrightarrow Z(G)$ which satisfy

$$
\Delta\left(x^{\varphi}, y^{\varphi}\right)=\Delta(x, y)^{\varphi} \text { for all } x, y \in G \text { and } \varphi \in \operatorname{Aut}(G)
$$

- Given such a bilinear form Δ, the corresponding normal regular subgroups is isomorphic to (G, \circ), where \circ is explicitly defined by

$$
x \circ y=x y \Delta(x, y) \text { for all } x, y \in G
$$

- We need to know when this circle group (G, \circ) is actually isomorphic to G.

Multiple holomorph and bilinear forms

- Let us restrict to finite p-groups G of class two such that

$$
G^{\prime}=Z(G), \operatorname{Aut}(G)=\operatorname{Aut}_{c}(G), \text { which imply } \operatorname{Aut}(G)=\operatorname{Aut}_{z}(G) .
$$

The conditions on the regular subgroups and bilinear forms become vacuous.

Theorem (A. Caranti, 2018)

There is a bijection between:
(the normal regular subgroups of $\operatorname{Hol}(G)$ Aut(G) lies in

(1) the bilinear forms $\Delta: G / Z(G) \times G / G^{\prime} \longrightarrow Z(G)$ satisy

- In this case, the quotient group $T(G)$ parametrizes such bilinear forms Δ whose circle group (G, \circ), defined by $x \circ y=x y \Delta(x, y)$, is isomorphic to G.

Basic set-up

- Consider finite p-groups G of class two such that

$$
G^{\prime}=Z(G), \operatorname{Aut}(G)=\operatorname{Aut}_{c}(G), \text { which imply } \operatorname{Aut}(G)=\operatorname{Aut}_{z}(G) .
$$

The previous theorem implies that there is bijection between:

- the normal regular subgroups of $\operatorname{Hol}(G)$
(0) the bilinear forms $\Delta: G / G^{\prime} \times G / G^{\prime} \longrightarrow G^{\prime}$

We need to know when (G, \circ) is isomorphic to G, where $x \circ y=x y \Delta(x, y)$.

- In this case, since both of the arguments come from the same group G / G^{\prime}, we can define the following notion:
(1) Δ is symmetric $\Longleftrightarrow \Delta(y, x)=\Delta(x, y)$ for all $x, y \in G$
(2) Δ is anti-symmetric $\Longleftrightarrow \Delta(y, x)=\Delta(x, y)^{-1}$ for all $x, y \in G$
- Moreover, every bilinear form Δ decomposes as a product of a symmetric form with an anti-symmetric form via

$$
\Delta(x, y)=(\Delta(x, y) \Delta(y, x))^{\frac{1}{2}} \cdot\left(\Delta(x, y) \Delta(y, x)^{-1}\right)^{\frac{1}{2}}
$$

Isomorphism class of the circle groups

- The set of all bilinear forms is a group under multiplication in G^{\prime}.
- Let S denote the subgroup consisting of all symmetric forms.
- Let S^{\prime} denote the subgroup consisting of all anti-symmetric forms.

- Every bilinear form may be regarded as a dot on this plane.
- The origin corresponds to the trivial bilinear form $\Delta_{0}(x, y) \equiv 1$, and the corresponding circle group $(G, 0)$ is equal to G because then $x \circ y=x y$.

Proposition (A. Caranti \& T., arXiv:2205.15205)

Two points lying on the same horizontal slice have isomorphic circle groups.

Circle groups coming from symmetric forms

Corollary (A. Caranti \& T., arXiv:2205.15205)

Circle groups coming from symmetric forms are isomorphic to G.

- Direct proof. Let $\Delta: G / G^{\prime} \times G / G^{\prime} \rightarrow G^{\prime}$ be a symmetric form. Let

$$
x \circ y=x y \Delta(x, y)
$$

denote its circle group on G. Then

$$
\theta: G \rightarrow(G, \circ) ; x^{\theta}=x \Delta(x, x)^{1 / 2}
$$

is an isomorphism. It is a homomorphism because

$$
\begin{aligned}
(x y)^{\theta} & =x y \Delta(x y, x y)^{1 / 2} \\
& =x y \Delta(x, x)^{1 / 2} \Delta(y, y)^{1 / 2} \Delta(x, y) \\
& =x \Delta(x, x)^{1 / 2} \circ y \Delta(y, y)^{1 / 2} \\
& =x^{\theta} \circ y^{\theta}
\end{aligned}
$$

It is injective because $x^{\theta}=1$ implies $x \in G^{\prime}$ and θ is the identity on G^{\prime}. It is then surjective because G and (G, \circ) have the same finite order. \square

Symmetric forms vs Anti-symmetric forms

- The anti-symmetric forms are much harder than the symmetric forms.
- Circle groups coming from symmetric forms are isomorphic to G.
- Not the case for anti-symmetric forms.
- The set of bilinear forms is a group under multiplication in G^{\prime}.
- Let Δ_{1}, Δ_{2} be such that their circle groups are both isomorphic to G, so they correspond to some elements $\theta_{1} \operatorname{Hol}(G), \theta_{2} \operatorname{Hol}(G)$ in $T(G)$.
- If Δ_{1}, Δ_{2} are both symmetric, then $\Delta_{1} \Delta_{2}$ corresponds to $\theta_{1} \theta_{2} \operatorname{Hol}(G)$, that is, the group operations of symmetric forms and $T(G)$ agree.
- Not the case for anti-symmetric forms.
- We looked at a special family of groups for which G / G^{\prime} and G^{\prime} are both elementary abelian so that we can use linear algebra.

Main result (revisited)

- Consider finite p-groups G with p an odd prime.
- Question. Can $T(G)$ have divisors outside of $p-1$ and p ?
- Answer. Yes. In fact, the order of $T(G)$ can be made very large.

Main Theorem (A. Caranti \& T., arXiv:2205.15205)

For any $n \geq 4$, there is a finite p-group G of class two of order $p^{n+\binom{n}{2}}$ such that

$$
T(G) \simeq \underbrace{\mathbb{F}_{p}^{\binom{n}{2}\binom{n+1}{2}}}_{\text {from symmetric forms }} \rtimes \underbrace{\left(\mathbb{F}_{p}^{\left(\binom{n}{2}-n\right) \times n} \rtimes\left(\operatorname{GL}_{n}\left(\mathbb{F}_{p}\right) \times \mathrm{GL}_{\binom{n}{2}-n}\left(\mathbb{F}_{p}\right)\right)\right)}_{\text {from anti-symmetric forms }}
$$

where the second semidirect product is given by $Q^{(A, M)}=M^{-1} Q A$.

- The symmetric part is elementary abelian and has very simple structure.
- The anti-symmetric part is much more complicated.

[^0]: ${ }^{1}$ Supported by JSPS KAKENHI 21K20319
 ${ }^{2}$ Member of GNSAGA-INdAM, Italy

